# STABILITY OF MOTION IN A CRITICAL CASE 

PM.K Vol. 31, No. 3, 1967, pp. 516-519

## NGO VAN VYONG <br> (Hanoi, VDR)

(Received January 3 1967)

We consider a stability of motion defined by a system of differential equations of perturbed motion of the type

$$
\begin{equation*}
x_{i}=y_{i}+X_{i}^{*}, \quad y_{i}^{*}=Y_{i}^{*}, \quad \zeta_{s}=\sum_{n=1}^{n} P_{s h} \xi_{k}+Z_{s} * \quad\binom{i=1, \ldots, m}{s=1, \ldots, n} \tag{0.1}
\end{equation*}
$$

where $X_{i}{ }^{*}, Y_{i}{ }^{*}$ and $Z_{s} *$ are holomorphic functions containing no terms of order lower than second in $x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{m} ; s_{1}, \ldots, s_{n}$. All roots of Eq. $\left|p_{s h}-\delta_{s h} \lambda\right|=0$ have, different from zero, negative real parts.

Let us consider a system (0.1) with conditions

$$
\begin{gather*}
Y_{i}^{*}=\sum_{k=1}^{m} a_{i k} y_{k}^{2}+\sum_{k=1}^{m} P_{i k_{i}}\left(\zeta_{1}, \ldots, \zeta_{n}\right) y_{k}+Q_{i}\left(\zeta_{1}, \ldots \zeta_{n}\right)+ \\
+\sum_{\sigma=1}^{n} \zeta_{\sigma} \varphi_{i \sigma}\left(x_{1}, \ldots, x_{m}\right)+R_{i}\left(x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{m} ; \zeta_{1}, \ldots, \zeta_{n}\right)  \tag{0.2}\\
Z_{s}^{*}=\sum_{\sigma=1}^{n} \zeta_{\sigma} \omega_{s \sigma}\left(x_{1}, \ldots, x_{m}\right)+R_{s}^{\prime}\left(x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{m} ; \zeta_{1}, \ldots, \zeta_{n}\right)
\end{gather*}
$$

where $a_{i k}$ are constants; $\varphi_{i \sigma}$ and $\omega_{s \sigma}$ are holomorphic functions which vanish when $x_{1}=$ $=\ldots=x_{m}=0 ; P_{i k}$ are linear and $Q_{i}$ are quadratic forms in $s_{1}, \ldots, s ; R_{i}$ and $R_{s}$ ' are holomorphic functions in $x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{m} ;$ and $\zeta_{1}, \ldots, \zeta_{n}$, containing no terms of order lower than third in these variables. Stability of this system was investigated in [1]. We attempt to show that the unperturbed motion is unstable when $X_{i}^{*}$ and $Z_{s}^{*}$ satisfy the conditions (0.2).

Although the functions $Y_{i}^{*}$ and $Z_{s}^{*}$ investigated in [1] represent a particular form throughout, function $V$ proposed by the authors of [1] is not a Chetaev function unless additional conditions are imposed on $Y_{i}{ }^{*}$ and $Z_{s}{ }^{*}$. Indeed, expression ([1], (2.8)) e.g. contains aggregates of the form

$$
\sum_{k=1}^{m}\left[1+\left(1-\sum_{k=1}^{m} a_{i k}\right) x_{k}\right] R_{i}, \quad \sum_{k=1}^{m} \sum_{s=1}^{n} \psi_{k: s}\left(x_{1}, \ldots, x_{m}\right) R_{s}^{\prime}
$$

which include terms such as

$$
x_{i}^{\delta_{i}}, \quad y_{i} x_{i}^{\nu_{i}}, \quad \zeta_{s} x_{i}^{u_{i}}\left(\delta_{i}, \mu_{i} v_{i} \geqslant 2\right)
$$

Obviously, in presence of such terms, $d V / d t$ can assume, for $V>0$, values of any sign. It follows therefore that additional conditions must be imposed on $Y_{i} *$ and $Z_{*}{ }^{*}$ when choosing $V$ according to [1], (2.5). These conditions are:

1) When $y_{1}=\ldots=y_{m}=\zeta_{1}=\ldots=\zeta_{n}=0$ then all $Y_{i}{ }^{*} \equiv 0$, and all $Z_{s}{ }^{*} \equiv 0$.
2) All $R_{i}$ and $R_{s}{ }^{\prime}$ do not contain terms of order lower than second in $y_{1}, \ldots, y_{m}$ and $s_{1}$, $\ldots, s_{n}$.
1. Consider a system of Eqs. (0.1) assuming that $X_{i} *$ and $Z_{s} *$ vanish when $y_{1}=\ldots=$ $\overline{\overline{=} y_{m}=s_{1}=\cdots=s_{n}=0 \text {. This assumption does not reduce the generality of our problem }}$

Let us transform (0.1), putting

$$
\begin{equation*}
\zeta_{s}=z_{s}+u_{s}\left(x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{m}\right) \quad(s=1, \ldots, n) \tag{1.1}
\end{equation*}
$$

where $u_{b}\left(x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{m}\right)$ are roots of

$$
p_{s 1} u_{1}+\cdots+p_{s n} u_{n}+Z_{s}^{*}\left(x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{m} ; u_{1}, \ldots, u_{n}\right)=0
$$

As a result we obtain

$$
\begin{equation*}
x_{s}=y_{i}+X_{i}, \quad y_{i}^{*}=Y_{i} \quad z_{s}=\sum_{k=1}^{n} p_{s k} z_{k}+Z_{s} \quad\binom{i=1, \ldots, m}{s=1, \ldots, n} \tag{1.2}
\end{equation*}
$$

where $X_{i}$ and $Y_{i}$ are the values of functions $X_{i}{ }^{*}$ and $Y_{i}{ }^{*}$ when

$$
\begin{gather*}
\zeta_{s}=z_{s}+u_{s}, \mathrm{~s}  \tag{1.3}\\
z_{s}=z_{s}^{*}\left(x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{m} ; z_{1}+u_{1}, \ldots, z_{n}+u_{n}\right)- \\
-z_{s}^{*}\left(x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{m} ; u_{1}, \ldots, u_{n}\right)-\sum_{k=1}^{m}\left(y_{k}+X_{k}\right) \frac{\partial u_{s}}{\partial x_{k}}-\sum_{k=1}^{m} Y_{k} \frac{\partial u_{s}}{\partial y_{k}}
\end{gather*}
$$

## We note that

a) when $y_{1}=\ldots=y_{m}=z_{1}=\ldots=z_{m}=0$ then $X_{i} \equiv 0$.
 provided that all $Y$,* become identically zero when $y_{1}=\ldots=y_{m}=s_{1}=\ldots=s_{n}=0$.
c) if all $Y_{i}$ vanish when $y_{1}=\ldots=y_{m}=s_{1}=\ldots=s_{\eta}=0$ and $Y_{i}$ does not contain terms of firat order in $y_{1}, \ldots, y_{m}$ with $z_{1}=\ldots=z_{n}=0$, then functions $Z_{\text {, will not contain }}$ terms of first order in $y_{1}, \ldots, y_{m}$ when $z_{1}=\ldots=z_{n}=0$.

Let us now assume that $Y_{1}=0(i=1, \ldots, m)$ with $y_{1}=\ldots=y_{m}=z_{1}=\ldots=z_{n}=0$ and, that when $z_{1}=\ldots=z_{n}=0$, then functions $Y_{i}$ do not contain linear terms in $y_{1, \ldots,} y_{m}$. We shall show that the unperturbed motion is unstable.

Let us take the Chetaev function in the form

$$
\begin{equation*}
V=\sum_{i=1}^{m} x_{i} y_{i}+\sum_{s=1}^{n} z_{s} y_{s}\left(x_{1}, \ldots, x_{m}\right)+W\left(z_{1}, \ldots, z_{n}\right) \tag{1.1}
\end{equation*}
$$

where $W\left(x_{1}, \ldots, z_{n}\right)$ is a negative definite quadratic form satisfying Eq.

$$
\sum_{s=1}^{n} \frac{\partial W}{\partial z_{s}}\left(p_{s 1} z_{1}+\cdots+p_{s n^{2}}\right)=\sum_{s=1}^{n} z_{s}^{2}
$$

and $\nu_{e}$ are holomorphic functions of $x_{1 ; * *,} x_{m}$ which become zero when $x_{1}=\ldots=x_{m}=0$ and which satisfy Eqs.

$$
\sum_{i=1}^{m} x_{i} F_{i k}+\sum_{s=1}^{n} v_{s}\left(p_{s k}+Q_{s k}\right)=0, \quad(k=1, \ldots, n)
$$

in which $F_{i k}$ and $Q_{i k}$ are

$$
F_{i k}=\left.\frac{\partial Y_{i}}{\partial z_{k}}\right|_{z=y=0}, \quad Q_{s k}=\left.\frac{\partial z_{s}}{\partial z_{k}}\right|_{z=y=0}
$$

When functions $v_{\text {a }}$ are chosen in this manner, then the derivative $V^{\prime}$ can, by virtue of the structure of right-hand side parts of the system ( 1,2 ), be represented by

$$
V^{\prime}=\sum_{i=1}^{m} y_{i}{ }^{2}+\sum_{s=1}^{n} z_{s}{ }^{2}+\sum_{i=1}^{m} \sum_{k=1}^{m} y_{i} y_{k} \varphi_{i k}+\sum_{j=1}^{n} \sum_{0=1}^{n} z_{j} z_{0} \psi_{j \sigma}+\sum_{i=1}^{m} \sum_{j=1}^{n} y_{i} z_{j} f_{i j}
$$

where $\varphi_{i k}$, and $\Psi_{j a} f_{i j}$ become zero when $\ldots=y_{m}=z_{1}=\cdots=z_{n}=0$.
Let us consider the region $V>0$. Obviously within this region $V^{\prime}$ is positive and becomes zero only on the boundary of the region $V>0$ where $y_{1}=\ldots=y_{m}=z_{1}=\ldots=z_{n}=0$. Hence the unperturbed motion is unstable [2].

Note. It can easily be shown that in this case motions $x_{i}=c_{i}(i=1, \ldots, m), y_{1}=\ldots=y_{n}=$ $=z_{1}=\ldots=z_{n}=0$ will, for sufficiently small $c_{i}$, also be unstable.
2. We shall now consider the case when $Y_{i} \neq 0$ while $y_{1}=\ldots=y_{m}=z_{1}=\ldots=z_{n}=0$. Assume that when $z_{1}=\ldots=z_{n}=0 Y_{i}$ has no terms linear in $y_{1}, \ldots y_{m}$ and that in (1.2) we have

$$
\begin{gathered}
Y_{i}=\sum_{k=1}^{m} g_{i k} x_{k} r_{i k}+\sum_{k=1}^{m} x_{k}{ }^{r_{i k}} f_{i k}\left(x_{1}, \ldots, x_{m}\right)+\sum_{k=1}^{m} a_{i k} y_{k}^{2}+ \\
+\sum_{0=1}^{n} z_{0} \varphi_{i \sigma}\left(x_{1}, \ldots, x_{m}\right)+\sum_{k=1}^{m} P_{i k}\left(z_{1}, \ldots, z_{n}\right) y_{k}+Q_{i}\left(z_{1}, \ldots, z_{n}\right)+ \\
\quad+R_{i}\left(x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{m} ; z_{1}, \ldots, z_{n}\right) \\
Z_{s}=\sum_{\sigma=1}^{n} z_{\sigma} \omega_{s 0}\left(x_{1}, \ldots, x_{n}\right)+R_{a}^{\prime}\left(x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{m} ; z_{1}, \ldots, z_{n}\right)
\end{gathered}
$$

$$
(i=1, \ldots, m ; s=1, \ldots, n)
$$

where $a_{i k}$ and $q_{i k}$ are constants; $f_{i k}, \varphi_{i \sigma}$ and $\omega_{s o}$ are holomorphic functions of $x_{1}, \ldots, x_{m}$ vanishing when $x_{1}=\ldots=x_{m}=0 ; P_{i k}$ are linear and $Q_{i}$ are quadratic forms in $x_{1}, \ldots, z_{n} ;$ $R_{1}$ are holomorphic functions of $x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{m}$; and $z_{1}, \ldots, z_{m}$, containing no terms of order lower than third in the above variables and no terms of order lower than second in $y_{1} \ldots y_{m}$ and $z_{1}, \ldots, z_{n} ; R_{*}^{\prime}$ are holomorphic functions of $x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{m}$ and $z_{1}, \ldots, z_{n}$, vanishing when $x_{k}=y_{k}=z_{s}=0$, and containing no terms linear in $z_{1}, \ldots, z_{n}$ when $y_{1}=$ $=\ldots=y_{m}=0$. We should note that if functions $Y_{i}$ contain e.g. terms $x_{i}{ }^{\text {fik }}$ when $z_{1}=$ $=\cdots=z_{n}=0$ then functions $z_{\text {a }}$ may contain analogous terms when $z_{1} \ldots \ldots=z_{n}=0$ and their order in $x_{i}$ will be, at most, higher by one. This property of $Z_{\text {. }}$ follows from (1.3).

We shall now show that the unperturbed motion is unstable, if:
a) nonlinear functions $Y_{t}$ and $Z_{\text {a }}$ satisfy conditions (2.1)
b) in each column of the matrix

$$
\left\lvert\, \begin{array}{cccc}
r_{11} & r_{12} & \ldots & r_{1 m}  \tag{2.2}\\
\cdots & \ldots & \cdot & \cdot \\
r_{m 1} & r_{m 2} & \cdots & \cdot \\
r_{m m}
\end{array}\right. \|
$$

the smallest numbers $r_{i} \prime_{k}\left(k=1, \ldots m^{\prime \prime}\right.$ are even and corresponding magnitudes $g_{1 / k}$ are of the same sign.

Let us take the Liapunov function $V$ of the form [1]

$$
\begin{gather*}
V=\sum_{k=1}^{m}\left[1+\left(\sum_{i} g_{i} k-\sum_{i=1}^{m} a_{i k}\right) x_{k}\right] y_{k}+\sum_{k=1}^{m} \sum_{s=1}^{n} z_{a} \psi_{k s}+ \\
+\sum_{i=1}^{m} \sum_{k=1}^{m} U_{i k}\left(z_{1}, \ldots, z_{n}\right) y_{k}+\sum_{k=1}^{m} W_{k} \tag{2.3}
\end{gather*}
$$

where $\psi_{k s}$ are functions of $x_{1}, \ldots, x_{m}$ which satisfy Eqs.

$$
\begin{gathered}
\sum_{s=1}^{n}\left(p_{s \sigma}+\omega_{3 \sigma}\right) \psi_{k s}+\left[1+\left(\sum_{i} g_{i^{\prime} k}-\sum_{i=1}^{m} a_{i k}\right) x_{k}\right] \varphi_{k \sigma}=0 \\
(\sigma=1, \ldots, n ; k=1, \ldots, m)
\end{gathered}
$$

$U_{1 k}$ and $W_{k}$ are linear and quadratic forms of $z_{1}, \ldots, z_{n}$ defined from Eqs.

$$
\begin{aligned}
& \sum_{s=1}^{n} \frac{\partial U_{i k}}{\partial z_{s}}\left(p_{s 1^{\prime}} z_{1}+\cdots+p_{s n} z_{n}\right)+P_{i k}=-\sum_{s=1}^{n} z_{s}\left(\frac{\partial \psi_{i s}}{\partial x_{k}}\right)_{0} \\
& \sum_{s=1}^{n} \frac{\partial W_{k}}{\partial z_{s}}\left(p_{s 1^{\prime}} z_{1}+\cdots+p_{s n_{n}} z_{n}\right)+Q_{k}=\sum_{i^{\prime}} \sum_{s=1}^{n} g_{i^{\prime} k_{s} z_{s}^{2}}
\end{aligned}
$$

Function $V$ of the form (2.3) satisfies the Liapunov theorem on instability [3], therefore the unperturbed motion is unstable. It is also unstable if:
a) nonlinear functions $Y_{i}$ and $Z_{\text {a }}$ satisfy the conditions (2.1);
b) diagonal elements $r_{\text {kk }}$ of the matrix (2.2) are odd and smaller than the elements of the corresponding column, and $g_{k k}>0$.

In this case the Liapunov function $V$ can be written as

$$
\begin{equation*}
V=\sum_{k=1}^{m}\left(g_{k k} x_{k}+\sum_{i=1}^{m} U_{i k}\right) y_{k}+\sum_{k=1}^{m} \sum_{s=1}^{n} z_{s} \varphi_{k s}+W \tag{2.4}
\end{equation*}
$$

where $\psi_{k_{k}}$ are functions of $x_{1}, \ldots, x_{m}$, satisfying

$$
\sum_{s=1}^{n}\left(p_{s \sigma}+\omega_{s \sigma}\right) \psi_{k s}+g_{k k} x_{k} \varphi_{k \sigma}=0 \quad\binom{\sigma=1, \ldots, n}{k=1, \ldots, m}
$$

Functions $U_{i k}$ and $W$ are linear and quadratic forms given by

$$
\begin{aligned}
& \sum_{s=1}^{n} \frac{\partial U_{i k}}{\partial z_{s}}\left(p_{s 1} z_{1}+\cdots+p_{s n} z_{n}\right)=-\sum_{s=1}^{n} z_{s}\left(\frac{\partial \psi_{i}}{\partial x_{k}}\right)_{0} \quad\binom{i=1, \ldots, m}{k=1, \ldots, m} \\
& \sum_{s=1}^{n} \frac{\partial W}{\partial z_{s}}\left(p_{s 1} z_{1}+\cdots+p_{s n} z_{n}\right)=\sum_{s=1}^{n} z_{s}^{2}
\end{aligned}
$$

Function $V$ of the form (2.4) satisfies the Liapunov theorem on instability [3], therefore the unperturbed motion is unstable.

## BIBLIOGRAPHY

1. Sagitov, M.S. and Filatov, A.N., On Liapunov stability in the critical case of a charac-
teristic equation with an even number of zero roots. PMM Vol. 29, No. 1, 1965.
2. Chetaev, N.G., Stability of Motion. 2-nd ed. M., Gostekhizdat, 1955.
3. Liapunov, A.M., General Problem of the Stability of Motion. M.-L., Gostekhizdat, 1950.
